概率论中 Var是什么意思?概率论方差概念介绍

先介绍一个单词:Variance/'veərɪəns/ n. 变异;变化;不一致;分歧;[数] 方差

方 差 用 V a r ( X ) 或 D ( X ) 来 表 示 : V a r ( X ) = D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 . 方差用Var(X)或D(X)来表示:Var(X)=D(X)=E[X-E(X)]^2=E(X^2)-[E(X)]^2. Var(X)D(X)Var(X)=D(X)=E[XE(X)]2=E(X2)[E(X)]2.

定 义 : 设 X 为 一 随 机 变 量 , 如 果 E { [ X − E ( X ) ] 2 } , 则 称 之 为 X 的 方 差 , 记 为 V a r ( X ) , 即 定义:设X为一随机变量,如果E\{[X-E(X)]^2\},则称之为X的方差,记为Var(X),即 XE{[XE(X)]2}XVar(X)
V a r ( X ) = E { [ X − E ( X ) ] 2 } , Var(X)=E\{[X-E(X)]^2\}, Var(X)=E{[XE(X)]2}
有 时 也 使 用 D ( X ) 表 示 X 的 方 差 。 有时也使用D(X)表示X的方差。 使D(X)X
我 们 把 σ = D ( X ) 成 为 标 准 差 , 它 在 意 义 上 也 描 述 了 平 均 的 偏 差 。 我们把\sigma=\sqrt{D(X)}成为标准差,它在意义上也描述了平均的偏差。 σ=D(X)

方差是随机变量的又一重要的数字特征,它刻画了随机变量取值在其中心位置附近的分散程度,也就是随机变量取值与平均值的偏离程度。设随机变量 X X X的期望为 E ( X ) E(X) E(X),偏离量 X − E ( X ) X-E(X) XE(X)本身也是随机的,为刻画偏离程度的大小,不能使用 X − E ( X ) X-E(X) XE(X)的期望,因为其值为零,即正负偏离彼此抵消了。为避免正负偏离彼此抵消,可以使用 E [ ∣ X − E ( X ) ∣ ] E[|X-E(X)|] E[XE(X)]作为描述 X X X取值分散程度的数字特征,称之为 X X X的平均绝对差。由于在数学上绝对值的处理很不方便,因此常用 [ X − E ( X ) ] 2 [X-E(X)]^2 [XE(X)]2的平均值度量 X X X E ( X ) E(X) E(X)的偏离程度,这个平均值就是方差。

离 散 型 随 机 变 量 的 方 差 : 离散型随机变量的方差:
D ( X ) = E [ X − E ( X ) ] 2 = ∑ i = 1 ∞ [ x i − E ( X ) ] 2 p i D(X)=E[X-E(X)]^2=\sum_{i=1}^{\infty}[x_i-E(X)]^2p_i D(X)=E[XE(X)]2=i=1[xiE(X)]2pi
连 续 型 随 机 变 量 的 数 学 期 望 E ( X ) : 连续型随机变量的数学期望E(X): E(X)
D ( X ) = E ( X − E ( X ) ] 2 = ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x . D(X)=E(X-E(X)]^2=\int_{-\infty}^{+\infty}[x-E(X)]^2f(x)dx. D(X)=E(XE(X)]2=+[xE(X)]2f(x)dx.

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页