大二下:概率论与数理统计复习 6.参数估计之基础概念

大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856

1. 点估计的概念

点估计是指用样本参数来估计总体参数。用样本构造一个统计量作为总体未知参数的估计,这个统计量称为估计量。用样本数据估计总体未知参数所得到的值,称为估计值。用样本数据估计总体未知参数所得到的值,称为估计值。
在这里插入图片描述

2. 矩估计法

用 样 本 距 估 计 总 体 距 , 用 样 本 距 的 函 数 估 计 总 体 距 的 函 数 。 均 值 距 估 计 为 μ ^ = X ‾ , 方 差 的 距 估 计 为 用样本距估计总体距,用样本距的函数估计总体距的函数。均值距估计为\hat{\mu}=\overline{X},方差的距估计为 μ^=X
σ ^ 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \hat{\sigma}^2=\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2 σ^2=n1i=1n(XiX)2
计 算 参 数 θ 矩 估 计 量 和 估 计 值 的 套 路 : 计算参数\theta矩估计量和估计值的套路: θ

  1. 求 出 总 体 的 距 μ = E ( X ) = g ( θ ) ; 求出总体的距\mu=E(X)=g(\theta); μ=E(X)=g(θ);
  2. 令 μ = g ( θ ) = X ‾ , 反 解 出 估 计 量 方 程 θ ^ = h ( X ‾ ) ; 令\mu=g(\theta)=\overline{X},反解出估计量方程\hat{\theta}=h(\overline{X}); μ=g(θ)=Xθ^=h(X);
  3. 将 X ‾ 值 代 入 θ ^ = h ( X ‾ ) 算 出 估 计 值 。 将\overline{X}值代入\hat{\theta}=h(\overline{X})算出估计值。 Xθ^=h(X)

在这里插入图片描述

3. 最大似然估计法

最大似然的思想是:如果一次试验的结果是A发生了,那么有理由相信A发生的概率就是最大的。因此考察参数取什么值时,这个样本出现的可能性最大,就用这个参数取值作为参数的估计值。

3.1. 求离散型总体未知参数的极大似然估计

离散型总体 X X X的分布律为 P { X = x } = p ( x , θ ) , θ ∈ Θ P\{X=x\}=p(x,\theta),\theta\in\Theta P{X=x}=p(x,θ),θΘ,其中 θ \theta θ为未知参数,设 x i , x 2 , . . . , x n x_i,x_2,...,x_n xi,x2,...,xn是一组样本观测值,则求 θ \theta θ的最大似然估计的套路:

  1. 计算似然函数
    L ( θ ) = ∏ i = 1 n p ( x i , θ ) ; L(\theta)=\prod_{i=1}^np(x_i,\theta); L(θ)=i=1np(xi,θ);
  2. 对似然函数取对数得到
    ln ⁡ L ( θ ) = ∑ i = 1 n ln ⁡ p ( x i , θ ) ; \ln L(\theta)=\sum_{i=1}^n\ln p(x_i,\theta); lnL(θ)=i=1nlnp(xi,θ);

    由 于 ln ⁡ L 是 单 调 递 增 函 数 , L 取 最 大 与 ln ⁡ L 取 最 大 取 到 的 θ 是 一 致 的 , 而 加 对 数 后 能 把 连 乘 转 换 成 累 加 , 这 样 求 导 , 找 极 值 比 较 方 便 ! 由于\ln L是单调递增函数,L取最大与\ln L取最大取到的\theta是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便! lnLLlnLθ便
  3. 对 θ 求 导 , 并 令 d d θ ln ⁡ L ( θ ) = ^ 0 , 解 出 最 大 似 然 估 计 θ ^ . 对\theta求导,并令\frac{d}{d\theta}\ln L(\theta)\hat=0,解出最大似然估计\hat{\theta}. θdθdlnL(θ)=^0θ^.

3.2. 求连续型总体未知参数的极大似然估计

连续型总体 X X X的概率密度为 f ( x , θ ) , θ ∈ Θ f(x,\theta),\theta\in\Theta f(x,θ),θΘ,其中 θ \theta θ为未知参数,设 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn是一组样本观测值,则求 θ \theta θ的最大似然估计的套路:

  1. 计 算 似 然 函 数 计算似然函数
    L ( θ ) = ∏ i = 1 n f ( x i , θ ) ; L(\theta)=\prod_{i=1}^nf(x_i,\theta); L(θ)=i=1nf(xi,θ);
  2. 对 似 然 函 数 取 对 数 得 到 对似然函数取对数得到
    ln ⁡ L ( θ ) = ∑ i = 1 n ln ⁡ f ( x i , θ ) ; \ln L(\theta)=\sum_{i=1}^n\ln f(x_i,\theta); lnL(θ)=i=1nlnf(xi,θ);
  3. 对 θ 求 导 , 并 令 d d θ ln ⁡ L ( θ ) = 0 , 解 出 最 大 似 然 估 计 θ ^ . 对\theta求导,并令\frac{d}{d\theta}\ln L(\theta)=0, 解出最大似然估计\hat{\theta}. θdθdlnL(θ)=0,θ^.

4. 无偏估计量

如 果 E ( θ ^ ) = θ , 则 称 θ ^ 为 θ 的 无 偏 估 计 量 。 如果E(\hat{\theta})=\theta,则称\hat{\theta}为\theta的无偏估计量。 E(θ^)=θθ^θ

5. 考点分布

  1. 理解参数的点估计、估计量与估计值的概念
  2. 掌握矩估计法和最大似然估计法.
  3. 会验证估计量的无偏性.
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页