大二下:概率论与数理统计复习 6.参数估计之实例演战

大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856

文章目录

1.

设 X 的 分 布 律 如 下 表 , 其 中 0 < θ < 1 2 , 未 知 。 设X的分布律如下表,其中0<\theta<\frac{1}{2},未知。 X0<θ<21,

X0123
p k p_{\tiny k} pk θ 2 \theta^2 θ2 2 θ ( 1 − θ ) 2\theta(1-\theta) 2θ(1θ) θ 2 \theta^2 θ2 1 − 2 θ 1-2\theta 12θ

现 抽 取 了 容 量 为 9 的 样 本 , 样 本 之 中 有 1 个 0 、 4 个 1 、 1 个 2 、 3 个 3 ( 此 描 述 等 价 于 x 1 = 0 , x 2 = x 3 = x 4 = x 5 = 1 , x 6 = 2 , x 7 = x 8 = x 9 = 3 ) . 现抽取了容量为9的样本,样本之中有1个0、4个1、1个2、3个3(此描述等价于x_1=0,x_2=x_3=x_4=x_5=1,x_6=2,x_7=x_8=x_9=3). 910411233x1=0,x2=x3=x4=x5=1,x6=2,x7=x8=x9=3.
求 θ 的 距 估 计 和 最 大 似 然 估 计 求\theta的距估计和最大似然估计 θ
解 : 解:

  1. μ = E ( X ) = 0 × θ 2 + 1 × 2 θ ( 1 − θ ) + 2 θ 2 + 3 ( 1 − 2 θ ) = 3 − 4 θ \large\mu =E(X)=0\times\theta^2+1\times2\theta(1-\theta)+2\theta^2+3(1-2\theta)=3-4\theta μ=E(X)=0×θ2+1×2θ(1θ)+2θ2+3(12θ)=34θ
    令 μ = 3 − 4 θ = X ‾ , 解 得 矩 估 计 量 θ ^ = 3 − X ‾ 4 ; \large令\mu=3-4\theta=\overline{X},解得矩估计量\hat{\theta}=\frac{3-\overline{X}}{4}; μ=34θ=Xθ^=43X;
    这 里 , X ‾ = 1 × 0 + 4 × 1 × 2 + 3 × 3 9 = 5 3 , 故 θ 的 矩 估 计 值 为 θ ^ = 3 − 5 3 4 = 1 3 \large这里,\overline{X}=\frac{1\times0+4\times1\times2+3\times3}{9}=\frac{5}{3},故\theta的矩估计值为\LARGE\hat{\theta}=\frac{3-\frac{5}{3}}{4}=\frac{1}{3} X=91×0+4×1×2+3×3=35θθ^=4335=31
  2. 似 然 函 数 L ( θ ) = θ 2 × [ 2 θ ( 1 − θ ) ] 4 × θ 2 × ( 1 − 2 θ ) 3 = 16 θ 8 ( 1 − θ ) 4 ( 1 − 2 θ ) 3 \large似然函数L(\theta)=\theta^2\times[2\theta(1-\theta)]^4\times\theta^2\times(1-2\theta)^3=16\theta^8(1-\theta)^4(1-2\theta)^3 L(θ)=θ2×[2θ(1θ)]4×θ2×(12θ)3=16θ8(1θ)4(12θ)3
    取 对 数 ln ⁡ L ( θ ) = ln ⁡ 16 + 8 ln ⁡ θ + 4 ln ⁡ ( 1 − θ ) + 3 ln ⁡ ( 1 − 2 θ ) . \large取对数\ln L(\theta)=\ln16+8\ln\theta+4\ln(1-\theta)+3\ln(1-2\theta). lnL(θ)=ln16+8lnθ+4ln(1θ)+3ln(12θ).
    令 d d θ ln ⁡ L ( θ ) = 0 + 8 θ − 4 1 − θ − 6 1 − 2 θ \large令\frac{d}{d\theta}\ln L(\theta)=0+\frac{8}{\theta}-\frac{4}{1-\theta}-\frac{6}{1-2\theta} dθdlnL(θ)=0+θ81θ412θ6
    = 2 θ ( 1 − θ ) ( 1 − 2 θ ) ( 4 − 17 θ + 15 θ 2 ) \large=\frac{2}{\theta(1-\theta)(1-2\theta)}(4-17\theta+15\theta^2) =θ(1θ)(12θ)2(417θ+15θ2)
    = 2 θ ( 1 − θ ) ( 1 − 2 θ ) ( 3 θ − 1 ) ( 5 θ − 4 ) = ^ 0 \large=\frac{2}{\theta(1-\theta)(1-2\theta)}(3\theta-1)(5\theta-4)\hat{=}0 =θ(1θ)(12θ)2(3θ1)(5θ4)=^0
    解 得 θ ^ 1 = 1 3 , θ ^ 2 = 4 5 ( 舍 去 ) 。 最 大 似 然 估 计 值 为 θ ^ = 1 3 \large解得\hat\theta_1=\frac{1}{3},\hat\theta_2=\frac{4}{5}(舍去)。最大似然估计值为\hat\theta=\frac{1}{3} θ^1=31,θ^2=54θ^=31

2.

设 X 的 分 布 律 如 下 表 , 其 中 0 < θ < 1 , 未 知 . 设X的分布律如下表,其中0<\theta<1, 未知. X0<θ<1,.

X123
p k p_{\tiny k} pk θ 2 \theta^2 θ2 2 θ ( 1 − θ ) 2\theta(1-\theta) 2θ(1θ) ( 1 − θ ) 2 (1-\theta)^2 (1θ)2

现 抽 取 了 样 本 x 1 = 1 , x 2 = 2 , x 3 = 1. 现抽取了样本x_1=1,x_2=2,x_3=1. x1=1,x2=2,x3=1.
求 θ 的 矩 估 计 值 和 最 大 似 然 估 计 值 。 求\theta的矩估计值和最大似然估计值。 θ
解 : 解:

  1. μ = E ( x ) = 1 × θ 2 + 2 × 2 θ ( 1 − θ ) + 3 × ( 1 − θ ) 2 = 3 − 2 θ ; \large\mu=E(x)=1\times\theta^2+2\times2\theta(1-\theta)+3\times(1-\theta)^2=3-2\theta; μ=E(x)=1×θ2+2×2θ(1θ)+3×(1θ)2=32θ;
    令 μ = 3 − 2 θ = X ‾ , 解 得 矩 估 计 量 θ ^ = 3 − X ‾ 2 . \large令\mu=3-2\theta=\overline{X},解得矩估计量\hat{\theta}=\frac{3-\overline{X}}{2}. μ=32θ=X,θ^=23X.
    这 里 X ‾ = 1 + 2 + 1 3 = 4 3 , 故 θ 的 矩 估 计 值 为 θ ^ = 3 − 4 3 2 = 5 6 . \large 这里\overline{X}=\frac{1+2+1}{3}=\frac{4}{3},故\theta的矩估计值为\hat{\theta}=\frac{3-\frac{4}{3}}{2}=\frac{5}{6}. X=31+2+1=34,θθ^=2334=65.
  2. 似 然 函 数 L ( θ ) = P ( x 1 = 1 ) × P ( x 2 = 2 ) × P ( x 3 = 1 ) = θ 2 × 2 θ ( 1 − θ ) × θ 2 = 2 θ 5 ( 1 − θ ) \large似然函数L(\theta)=P(x_1=1)\times P(x_2=2)\times P(x_3=1)=\theta^2\times2\theta(1-\theta)\times\theta^2=2\theta^5(1-\theta) L(θ)=P(x1=1)×P(x2=2)×P(x3=1)=θ2×2θ(1θ)×θ2=2θ5(1θ)
    取 对 数 ln ⁡ L ( θ ) = ln ⁡ 2 + 5 ln ⁡ θ + ln ⁡ ( 1 − θ ) . \large取对数\ln L(\theta)=\ln2+5\ln\theta+\ln(1-\theta). lnL(θ)=ln2+5lnθ+ln(1θ).
    令 d d θ ln ⁡ L ( θ ) = 0 + 5 θ − 1 1 − θ = 5 − 6 θ θ ( 1 − θ ) \large令\frac{d}{d\theta}\ln L(\theta)=0+\frac{5}{\theta}-\frac{1}{1-\theta}=\frac{5-6\theta}{\theta(1-\theta)} dθdlnL(θ)=0+θ51θ1=θ(1θ)56θ
    解 得 最 大 似 然 估 计 值 为 θ ^ = 5 6 \large解得最大似然估计值为\hat\theta=\frac{5}{6} θ^=65
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页